Conceptual
(1) The odd one out is $\left(-3, \frac{3 \pi}{4}\right)$.
(2) The horizontal line $y=2$.
(3) See end of this file.

COMPUTATIONAL
(1) $-\pi$
(2) $r=2 a \cos \theta+2 b \sin \theta$ (Write ont aqn in Cartesian and then substitute.
This is traced ont once as $0 \leqslant \theta<\pi$ for example.
(3) (2) $\int_{5 \pi / 6}^{2 \pi / 3}(\theta \sin \theta)(\cos \theta-\theta \sin \theta) d \theta=\sqrt{\frac{\pi^{2} \sqrt{3}}{32}+\frac{61 \pi^{3}}{1296}}$
(b)


$$
\begin{aligned}
& \int_{\frac{2 \pi}{3}}^{\frac{5 \pi}{6}} \frac{1}{2} \theta^{2} d \theta \\
& \frac{61 \pi^{3}}{1296}
\end{aligned} \frac{\pi^{2}}{6 \sqrt{3}} \quad \frac{25 \pi^{2}}{96 \sqrt{3}}
$$



Region $A$ is defined by
$y \geq 2$
$x \geq 0$
$x^{2}+y^{2} \leq 16$
$r \sin \theta>2$
ie.
$r \cos \theta \geqslant 0$ $|r| \leq 4$

The regions satisfying all three constraints has been shadeal in purple.
( $\geq r s>$ is not important in this problem)


I'll let goncheck that this is the answer for region B.

